Open main menu

CUGC Wiki β

Changes

Pressure, Atmosphere and Instrumentation

1 byte added, 18:04, 17 March 2019
m
Pressure coefficient
Note that the velocity is measured in an aeroplane frame of reference so we can treat the problem as flow going around the aeroplane which makes things simpler. If the frame of reference is changed in this way, even the air above the United States can come at you at a velocity \(V\) depending on how fast you fly, so the author is just half joking when the above example is made.
The pressure coefficient is non-dimensional: it is a pressure divided by a pressure so no unit emerge from this algebra. However, if the flying speed is kept constant, i.e. the denominator is kept constant, the pressure coefficient is a representation of \(p_A\) given that the pressure in United States (\(p_{\infty}\)}) does not depend on the way you fly. If \(C_p\) increases, it means \(p_A\) is higher.
The maximum possible value of \(C_p\) is unity, which corresponds to stagnating the flow. If all the kinetic energy has been transformed into pressure potential, there is nothing else whatsoever we can do to increase the flow pressure further (with the exception of adding some work by mechanical means, which we shall not consider). There is, in theory, no minimum value pf \(C_p\), so long as \(p_A\) is above zero.
119
edits